<u>220 – Equations différentielles x'=f(x,t), exemples</u> <u>d'études qualitatives des solutions.</u>

Le plan:

I) Généralités.

Définition d'une équation différentielle, solution. Problème de Cauchy. Prolongement. Solution maximale. Exemple. Unicité du problème de Cauchy. Théorème de Cauchy-Lipschitz. Lemme de Gronwäll. Ordre d'une équation différentielle. Equivalence à un système d'équations différentielles d'ordre un. Principe de superposition.

II) Etude qualitative en dimension 1.

Barrière supérieure, inférieure, poreuse, non poreuse, forte ou non. Exemple. Isoclines. Entonnoir et anti-entonnoir. Théorèmes liés aux entonnoirs et anti-entonnoirs. Principe d'explosion. Exemple d'étude qualitative en dimension 1.

III) Equations différentielles linéaires.

Définition. Structure de l'ensemble des solutions. Equation homogène. Système fondamental de solutions. Wronskien. Propriétés du wronskien. Méthode de variation de la constante. Cas des équations différentielles linéaires à coefficients constants. Expression de la solution générale. Stabilité des solutions au voisinage de points d'équilibre. Plan tr/det en dimension 2. Généralisation à la dimension quelconque. Etude des équations différentielles linéaires de la forme y''+q(t).y=0.

IV) Etude des systèmes non linéaires.

Théorème de Liapounov. Système linéarisé. Exemple du système proie/prédateur de Lotka-Volterra. Portrait de phase.

Les développements :

B19 : Théorème de Liapounov B20 : Etude de y"+q(t).y=0 B21 : Système proie/prédateur

La bibliographie :

[HuW]-[Rou]-[Pom]-[Go2]-[CL3]