Problèmes d'extremums

Romain Giuge

1 Motivations

1.1 Optimisation

[BMP p22]

En optimisation numérique, on peut considérer par exemple le problème de la détermination de $\inf\{f(x), x \in \mathbb{R}^d\}$. La solution est approchée par un algorithme donnant une suite (x_n) convergeant vers cette solution. La suite vérifie une relation de récurrence $x_{n+1} = x_n + t_n d_n$ (où d_n est la direction de descente et t_n le pas de descente).

Exemple 1 (Méthode de Newton). On remplace la minimisation de f à partir des itérés de x_n , $\min_{h\in\mathbb{R}^d} f(x_n+h)$ par la minimisation d'un modèle simplifié de f autour de x_n :

$$\min_{h \in \mathbb{R}^d} \left(\frac{1}{2} (Hf(x_n)h, h) + (\nabla f(x_n), h) + f(x_n) \right).$$

Et on choisit comme direction de descente le vecteur h qui minimise cette fonction quadratique : $d_n = -(Hf(x_n))^{-1}\nabla f(x_n)$ sous réserve d'existence.

[BMP p32]

Exemple 2. Soient E un espace euclidien, b un vecteur de E et u un endomorphisme de E symétrique défini positif. Alors l'application $f: E \to \mathbb{R}, x \mapsto \frac{1}{2}(u(x), x) + (b, x)$ admet un unique point minimum sur E, qui est $-u^{-1}(b)$.

> Nous verrons comment étudier cet exemple avec les résultats qui vont suivre.

[A p106]

1.2 Calcul des variations

Théorème 3. Soient H un espace de Hilbert, $L: \mathcal{C}^1(\mathbb{R}, H, H) \to \mathbb{R}$ et $A: \mathcal{C}^1([a, b], H) \to \mathbb{R}$, $\gamma \mapsto \int_a^b L(t, \gamma(t), \gamma'(t)) dt$. Pour que $\gamma \in \mathcal{C}^1([a, b], H)$ soit une extrémale à extrémités fixes $\gamma(a) = A$ et $\gamma(b) = B$ du lagrangien L, il faut et il suffit que $t \mapsto D_3L(t, \gamma(t), \gamma'(t))$ soit différentiable et que $\frac{d}{dt}D_3L(t, \gamma(t), \gamma'(t)) = D_2L(t, \gamma(t), \gamma'(t))$, pour tout $t \in [a, b]$.

Dans la pratique, on peut chercher par exemple le plus court chemin de A à B d'un espace euclidien E, ce qui revient à chercher les \mathcal{C}^1 -courbes γ d'origine A et d'extrémité B rendant minimum $\int_a^b \|\gamma'(t)\| dt$.

2 Existence d'extremums

[R p370]

Définition 4. Soient X une partie d'un espace normé E sur \mathbb{R} , $a \in X$, $f: X \to \mathbb{R}$.

- (i) On dit que f admet en a un maximum global si $f(x) \leq f(a)$ pour tout $x \in X$.
- (ii) On dit que f admet en a un maximum local s'il existe un voisinage V de a dans E tel que $f(x) \leq f(a)$ pour tout $x \in V \cap X$.

On définit de même un minimum global et local en renversant le sens des inégalités.

2.1 Compacité

[G p31]

Proposition 5. Soit $f:(K,d) \to \mathbb{R}$ une application continue avec (K,d) compact. Alors f est bornée et atteint ses bornes.

[P p296]

Application 6. Soit C un cercle de \mathbb{R}^2 . Alors il existe un triangle d'aire maximale inscrit dans C.

[P p295]

Proposition 7. Soient E un evn de dimension finie et $f: E \to \mathbb{R}$ une application continue telle que $\lim_{\|x\|\to\infty} f(x) = +\infty$. Alors f est minorée et atteint son minimum.

 \triangleright On montre que la fonction f de l'exemple 2 vérifie l'hypothèse de cette proposition. On a donc l'existence de son minimum.

Application 8. La distance d'un point à une partie fermée non vide F d'un evn de dimension finie est atteinte.

Application 9 (Théorème de D'Alembert-Gauss). Tout polynôme $P \in \mathbb{C}[X]$ non constant admet une racine.

2.2 Méthode de la projection orthogonale

[BMP p111]

Proposition 10 (Meilleure approximation). Soit $\rho: I \to \mathbb{R}_+^*$ une fonction poids. On définit le produit scalaire $(f,g) = \int_I f(x)\overline{g}(x)\rho(x)\,\mathrm{d}x$ sur $L^2(I,\rho)$. On note P_n les polynômes orthogonaux pour ce produit scalaire. Alors $\min(\|f-Q\|,Q\in\mathbb{R}_N[X])$ est atteint en $P=\sum_{n=0}^N \frac{(f,P_n)}{\|P_n\|^2}P_n$.

Exemple 11. Soit $f: \mathbb{R}^3 \to \mathbb{R}$, $(x, y, z) \mapsto \int_0^\infty e^{-t} (t^3 + xt^2 + yt + z)^2 dt$. Alors f possède un minimum sur \mathbb{R}^3 , égal à f(-9, 18, -6) = 36. De plus, ce minimum est atteint en un seul point.

[BMP p123]

Exemple 12. La transformée de Fourier $S_N(f)$ de $f \in L^2(\mathbb{T})$ est la projection orthogonale de f sur l'ensemble \mathcal{P}_N des polynômes trigonométriques de degré $\leq N$. Donc pour tout $P \in \mathcal{P}_N$, $||f - S_N(f)||_2 \leq ||f - P||_2$.

[R p384]

Exemple 13 (Moindres carrés). Etant donnés n points (x_i, y_i) du plan \mathbb{R}^2 , avec les x_i non tous égaux entre eux, il existe des réels a et b uniques qui rendent minimale la somme $\sum_{i=1}^{n} (y_i - ax_i - b)^2$.

2.3 Polynômes de meilleure approximation

[D p40]

Théorème 14. Soient $n \in \mathbb{N}^*$ et $f: [0,1] \to \mathbb{R}$ continue. Alors il existe un unique polynôme P de $degré \leq n$ tel que $||f - P||_{\infty} = \inf_{Q \in \mathbb{R}_n[X]} ||f - Q||_{\infty}$.

Exemple 15. On définit le n-ième polynôme de Tchebychev par l'unique polynôme de degré n vérifiant $T_n(\cos(\theta)) = \cos(n\theta)$, pour tout $\theta \in \mathbb{R}$. Alors $t_n = \frac{1}{2^{n-1}}T_n$ est le polynôme unitaire de degré n ayant la plus petite norme uniforme possible sur [-1,1]: cette norme vaut $\frac{1}{2^n}$.

[D p23]

Théorème 16 (Interpolation de Lagrange). On suppose que f est n+1 fois dérivable sur [a,b]. Soient x_0, \ldots, x_n des réels deux à deux distincts de [a,b], et L_f le polynôme interpolateur de Lagrange de f en les x_i . Alors pour tout $x \in [a,b]$, il existe $c \in]a,b[$ tel que $f(x)-L_f(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\prod_{k=0}^n(x-x_k)$.

Conséquence: le meilleur choix des x_i pour minimiser $||f - L_f||_{\infty}$ est de prendre les racines du polynôme de Tchebychev T_{n+1} .

2.4 Convexité

 $x \neq y$ et tout $\lambda \in]0,1[$.

Théorème 17 (Projection sur un convexe fermé). Soient H un espace de Hilbert et C un convexe fermé non vide de H. Pour tout $x \in H$, il existe un unique vecteur $y \in C$ tel que d(x,C) = ||x-y||.

[BMP p27]

Définition 18. Soient C un convexe d'une espace E et $f: C \to \mathbb{R}$ une application. On dit que f est convexe sur C si pour tout $(x,y) \in C^2$, pour tout $\lambda \in [0,1]$, $f(\lambda x + (1-\lambda y)) \leq \lambda f(x) + (1-\lambda)f(y)$. On dit que la fonction est strictement convexe si l'inégalité précédente est stricte pour tout

[R p381]

Proposition 19. Soit f une fonction numérique convexe sur un ouvert convexe U de \mathbb{R}^n . Si f est différentiable en $a \in U$ et si Df(a) = 0, alors f admet en a un minimum global sur U.

[BMP p30]

Proposition 20. L'ensemble des points réalisant le minimum d'une fonction convexe est un convexe.

Proposition 21. Soient C un convexe non vide et $f: C \to \mathbb{R}$ une application strictement convexe sur C. Alors il existe au plus un point $x \in C$ minimisant f sur C.

 \triangleright La fonction f de l'exemple 2 est strictement convexe. Son minimum est donc unique.

Théorème 22. Tout compact K de \mathbb{R}^n contenant 0 dans son intérieur est contenu dans un unique ellipsoïde de volume minimal.

[R p382]

2.5 Analyse complexe

Proposition 23 (Principe du maximum). Soient U un ouvert connexe de \mathbb{C} et f une fonction holomorphe non constante sur U. Alors la fonction $z \mapsto |f(z)|$ n'admet aucun maximum local sur U, et si elle admet un minimum local sur U, ce minimum est nécessairement nul.

D'autre part, la partie réelle et la partie imaginaire de f n'admettent pas d'extremum local.

Application 24 (Lemme de Schwarz). Soit $f: \mathbb{D} \to \mathbb{D}$ holomorphe telle que f(0) = 0. Alors $|f(z)| \leq |z|$ pour tout $z \in \mathbb{D}$.

[ZQ p466]

Théorème 25 (Lemme des 3 droites d'Hadamard). Soit F analytique dans la bande ouverte 0 < Re(z) < 1, continue et bornée dans la bande fermée. Si pour tout $t \in \mathbb{R}$, $|F(it)| \leq M_0$ et $|F(1+it)| \leq M_1$, alors pour tout $\theta \in [0,1]$, $|F(\theta+it)| \leq M_0^{1-\theta} M_1^{\theta}$.

Application 26 (Théorème de Riesz-Thorin). Soient $p_0 \neq p_1$, $q_0 \neq q_1$. On suppose que pour $i \in \{0,1\}$, l'opérateur $T: L^{p_i} \to L^{q_i}$ est continu de norme M_i . Alors pour p,q tels que $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$ et $\frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$ avec $\theta \in]0,1[$, on a que $T: L^p \to L^q$ est continu de norme $M \leqslant M_0^{1-\theta} M_1^{\theta}$.

3 Recherche d'extremums

3.1 Mise en garde

Exemple 27. Soit $f(x,y) = (x^2 - y)(3x^2 - y)$. La restriction de f à toute droite passant par (0,0) possède un minimum en (0,0) mais f ne possède pas de minimum en (0,0).

[R p371]

3.2 Utilisation du calcul différentiel

Proposition 28. Soient U un ouvert d'un espace normé E sur \mathbb{R} , $a \in U$ et $f: U \to \mathbb{R}$. Alors :

- (i) Condition nécessaire (pas suffisante) du premier ordre : si f admet en a un extremum local et si Df(a) existe, alors nécessairement a est un point critique de f, i.e. Df(a) = 0.
- (ii) Condition nécessaire (pas suffisante) du deuxième ordre : si f admet en a un minimum local et si $D^2f(a)$ existe, alors nécessairement Df(a)=0 et $D^2f(a)$ est une forme quadratique positive, i.e. $D^2f(a)(h,h) \ge 0$ pour tout $h \in E$.
- (iii) Condition suffisante (pas nécessaire) du second ordre : si E est de dimension finie, si Df(a) = 0 et si $D^2f(a)$ est une forme quadratique définie positive, alors f admet en a un minimum local strict.

Remarque 29. – Il est essentiel de supposer U ouvert dans le théorème : $f: x \mapsto x$ atteint son maximum sur [0,1] en x=1, mais $f'(1) \neq 0$.

– Les réciproques sont fausses : prendre $f(x) = x^3$ pour (i) et (ii), et $f(x) = x^4$ pour (iii), en a = 0.

ightharpoonup La fonction f de l'exemple 2 est \mathcal{C}^{∞} et Df(x).h = (u(x) + b, h). Si on note a le minimum de f, alors Df(a) = 0 et on obtient $a = -u^{-1}(b)$.

Exemple 30. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^4 + y^4 - 2(x-y)^2$. La fonction f admet pour points critiques O = (0,0), $A = (\sqrt{2}, -\sqrt{2})$ et $B = (-\sqrt{2}, \sqrt{2})$. Parmi eux, seuls A et B sont des extremums locaux (ici des minimums). Par la proposition 7, on montre qu'ici ces minimums locaux sont mêmes globaux.

Exemple 31. – L'application det : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ est différentiable sur $\mathcal{M}_n(\mathbb{R})$ et $D \det(A).H = \operatorname{tr}({}^t \operatorname{com}(A)H)$, pour tout $A, H \in \mathcal{M}_n(\mathbb{R})$.

- Les points critiques de det sont les matrices de rang $\leq n-2$.
- L'application det n'admet pas d'extremum local.

[R p386]

[G p317]

Exemple 32 (Point de Fermat). Soient A, B, C trois points non alignés du plan euclidien \mathbb{R}^2 . On suppose les trois angles du triangle ABC strictement inférieurs à $\frac{2\pi}{3}$. Alors le minimum sur \mathbb{R}^2 de la fonction f(M) = MA + MB + MC est atteint en un unique point P intérieur au triangle ABC et tel que les angles \widehat{APB} , \widehat{BPC} et \widehat{CPA} soient égaux à $\frac{2\pi}{3}$.

[G p318]

Théorème 33 (Principe du maximum). Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe C^2 . On définit le laplacien de f par $\Delta f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}$. On note B la boule unité ouverte de \mathbb{R}^n . Si $\Delta f = 0$, alors pour tout $x \in B$, $\min_{\|y\|=1} f(y) \leqslant f(x) \leqslant \max_{\|y\|=1} f(y)$.

3.3 Surface et plan tangent

Théorème 34 (Lemme de Morse). Soit $f: U \to \mathbb{R}$ une fonction de classe \mathcal{C}^3 sur un ouvert U de \mathbb{R}^n contenant l'origine. On suppose que 0 est un point critique non dégénéré de f, i.e. Df(0) = 0 et la forme quadratique hessienne $D^2f(0)$ est non dégénérée, de signature (p, n-p). Alors il existe un changement de coordonnées local $\varphi: x \mapsto u$ de classe \mathcal{C}^1 entre deux voisinages de l'origine dans \mathbb{R}^n tel que $\varphi(0) = 0$ et $f(x) - f(0) = u_1^2 + \dots + u_p^2 - u_{p+1}^2 - \dots - u_n^2$.

Application 35. Soit S la surface d'équation z = f(x, y) où f est une fonction de classe C^3 au voisinage de $a \in \mathbb{R}^2$. On suppose la forme quadratique $D^2f(a)$ non dégénérée et on note Π le plan tangent à S au point (a, f(a)). Alors :

- (i) Si $D^2f(a)$ est de signature (2,0), alors S est au-dessus de Π au voisinage de a.
- (ii) Si $D^2 f(a)$ est de signature (0,2), alors S est en-dessous de Π au voisinage de a.
- (iii) Si $D^2f(a)$ est de signature (1,1), alors S traverse Π selon deux courbes qui se coupent en a.

[R p372] 3.4 Extremums liés

[G p327]

[G p321]

[B p87]

Exemple 36. On cherche le point le plus proche de l'origine sur une courbe C. Deux cas :

- (i) C est définie paramétriquement par (x(t), y(t)). On cherche le minimum de $t \mapsto x(t)^2 + y(t)^2$.
- (ii) C est définie implicitement par g(x,y) = 0. On cherche le minimum de $x^2 + y^2$ lorsque x et y sont liés par cette relation.

Théorème 37 (Extremums liés). Soient $f, g_1, \ldots, g_r : U \to \mathbb{R}$ des fonctions de classe C^1 sur un ouvert U de \mathbb{R}^n . On pose $\Gamma = \{x \in U / g_1(x) = \cdots = g_r(x) = 0\}$. Si $f_{|\Gamma}$ admet un extremum local en $a \in \Gamma$ et si les formes linéaires $Dg_1(a), \ldots, Dg_r(a)$ sont linéairement indépendantes, alors il existe des réels $\lambda_1, \ldots, \lambda_r$ tels que $Df(a) = \lambda_1 Dg_1(a) + \cdots + \lambda_r Dg_r(a)$.

Application 38. Soit $n \in \mathbb{N}^*$. On munit $\mathcal{M}_n(\mathbb{R})$ de la norme $||M|| = \left(\sum_{i,j} m_{ij}^2\right)^{\frac{1}{2}}$. Alors l'ensemble des éléments de $\mathrm{SL}_n(\mathbb{R})$ de norme minimale est $\mathrm{SO}_n(\mathbb{R})$.

Application 39. Soit u un endomorphisme d'un espace euclidien E. Alors E possède une base orthonormée de vecteurs propres pour u (prendre f(x) = (u(x), x): il existe $x_0 \in E$ tel que $f(x_0) = \inf_{\|x\|=1} f(x)$ et x_0 est un vecteur propre de f).

Développements:

- 1. Ellipsoïde de John-Loewner (théorème 22).
- 2. Théorème des extrema liés (théorème 37).

Références:

- A. Avez Calcul différentiel [A].
- Sylvie Benzoni Calcul différentiel et équations différentielles [B].
- Beck, Malick, Peyré Objectif agrégation [BMP].
- Jean-Pierre Demailly Analyse numérique et équations différentielles [D].
- Xavier Gourdon Analyse, 2ème édition [G].
- Alain Pommellet Agrégation de mathématiques, Cours d'analyse [P].
- F. Rouvière Petit guide de calcul différentiel à l'usage de la licence et de l'agrégation [R].
- Hervé Queffélec, Claude Zuily Eléments d'analyse, 2ème édition [ZQ].